Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Prueba de sangre basada en IA detecta cáncer de ovario con 93 % de precisión

Por el equipo editorial de LabMedica en español
Actualizado el 13 Feb 2024
Print article
Imagen: Micrografía de un tumor de ovario mucinoso (Fotografía cortesía de los Institutos Nacionales de Salud)
Imagen: Micrografía de un tumor de ovario mucinoso (Fotografía cortesía de los Institutos Nacionales de Salud)

El cáncer de ovario, a menudo denominado el asesino silencioso, normalmente no presenta síntomas en sus etapas iniciales, lo que lleva a una detección tardía cuando el tratamiento se vuelve desafiante. El marcado contraste en las tasas de supervivencia resalta la necesidad urgente de un diagnóstico temprano: si bien las pacientes con cáncer de ovario en etapa avanzada tienen una tasa de supervivencia a cinco años de alrededor del 31 % después del tratamiento, la detección y el tratamiento tempranos pueden elevar esta tasa a más del 90 %. A pesar de más de tres décadas de investigación, desarrollar una prueba de diagnóstico temprano precisa para el cáncer de ovario ha resultado un desafío. Esta dificultad surge de los orígenes moleculares de la enfermedad, donde múltiples vías pueden conducir al mismo tipo de cáncer.

Los científicos del Centro Integrado de Investigación del Cáncer de Georgia Tech (CICR, Atlanta, GA, EUA) han logrado un gran avance al integrar el aprendizaje automático con información de metabolitos sanguíneos, desarrollando una prueba que puede detectar el cáncer de ovario con una precisión del 93 % en su grupo de estudio. Esta prueba supera a los métodos de detección existentes, especialmente en la identificación de enfermedades ováricas en etapa temprana entre mujeres clínicamente consideradas normales. Los investigadores han creado un nuevo método de diagnóstico, utilizando el perfil metabólico de una paciente para asignar una probabilidad más precisa de la presencia o ausencia de la enfermedad.

La espectrometría de masas, utilizada para identificar metabolitos en la sangre a través de su masa y carga, enfrenta una limitación: menos del 7 % de estos metabolitos en la sangre humana han sido caracterizados químicamente. Por lo tanto, identificar procesos moleculares específicos detrás del perfil metabólico de un individuo sigue siendo un desafío. Sin embargo, el equipo reconoció el potencial de utilizar la presencia de distintos metabolitos, detectados por espectrometría de masas, para crear modelos predictivos precisos mediante el aprendizaje automático. Este método es similar al uso de rasgos faciales individuales para desarrollar algoritmos de reconocimiento facial.

En su método innovador, los investigadores combinaron perfiles metabólicos con clasificadores de aprendizaje automático, logrando una precisión del 93 % en un estudio en el que participaron 564 mujeres de Georgia, Carolina del Norte, Filadelfia y el oeste de Canadá. Este grupo incluyó a 431 pacientes con cáncer de ovario activo y 133 mujeres sin la enfermedad. Los estudios en curso tienen como objetivo explorar la capacidad de la prueba para detectar enfermedades en etapas muy tempranas en mujeres asintomáticas. La visión para la aplicación clínica es un futuro en el que las personas con un perfil metabólico que indica una baja probabilidad de cáncer se sometan a un seguimiento anual, mientras que aquellas con puntuaciones que sugieren una alta probabilidad de cáncer de ovario reciban un seguimiento más frecuente o una derivación inmediata para pruebas de detección avanzadas.

"Este enfoque personalizado y probabilístico para el diagnóstico del cáncer es más informativo y preciso desde el punto de vista clínico que las pruebas binarias tradicionales (sí/no)", afirmó John McDonald, profesor emérito de la Facultad de Ciencias Biológicas, director fundador del CICR y autor correspondiente del estudio. "Representa una nueva dirección prometedora en la detección temprana del cáncer de ovario, y quizás también de otros cánceres".

Enlaces relacionados:
Georgia Tech

Miembro Platino
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Miembro Oro
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9

Print article

Canales

Química Clínica

ver canal
Imagen: Alcanzando velocidades de hasta 6.000 rpm, esta centrífuga forma la base de un nuevo tipo de prueba biomédica POC económica (Fotografía cortesía de la Universidad de Duke)

Prueba biomédica POC hace girar una gota de agua utilizando ondas sonoras para detección del cáncer

Los exosomas, pequeñas biopartículas celulares que transportan un conjunto específico de proteínas, lípidos y materiales genéticos, desempeñan un papel... Más

Hematología

ver canal
Imagen: El dispositivo portátil de bajo costo identifica rápidamente a los pacientes de quimioterapia en riesgo de sepsis (Fotografía cortesía de 52North Health)

Prueba de sangre POC por punción digital determina riesgo de sepsis neutropénica en pacientes sometidos a quimioterapia

La neutropenia, una disminución de los neutrófilos (un tipo de glóbulo blanco crucial para combatir las infecciones), es un efecto secundario frecuente de ciertos tratamientos contra... Más

Inmunología

ver canal
Imagen: El método de prueba podría ayudar a algunos pacientes con cáncer a un tratamiento más efectivo (Fotografía cortesía de 123RF)

Método de prueba podría ayudar a más pacientes recibir tratamiento adecuado contra el cáncer

El tratamiento del cáncer no siempre es una solución única, pero el campo de la investigación del cáncer está dando grandes pasos para encontrar a los pacientes los tratamientos más eficaces para sus afecciones... Más

Microbiología

ver canal
Imagen: El análisis de sangre podría identificar a millones de personas que propagaron la TB sin saberlo (Fotografía cortesía de la Universidad de Southampton)

Análisis de sangre para tuberculosis podría detectar millones de propagadores silenciosos

La tuberculosis (TB) es la enfermedad infecciosa más mortal del mundo y se cobra más de un millón de vidas al año, según informa la Organización Mundial de la Salud.... Más

Patología

ver canal
Imagen: Núcleos toroidales marcados en magenta y micronúcleos en verde (Fotografía cortesía del IRB Barcelona)

Herramienta bioinformática para identificar alteraciones cromosómicas en células tumorales puede mejorar diagnóstico del cáncer

La inestabilidad cromosómica es una característica común en los tumores sólidos y desempeña un papel crucial en el inicio, la progresión y la propagación... Más

Tecnología

ver canal
Imagen: El sensor electroquímico detecta HPV-16 y HPV-18 con alta especificidad (Fotografía cortesía de 123RF)

Biosensor de ADN permite diagnóstico temprano del cáncer de cuello uterino

El disulfuro de molibdeno (MoS2), reconocido por su potencial para formar nanoláminas bidimensionales como el grafeno, es un material que llama cada vez más la atención de la comunidad... Más