LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Google construye microscopio de RA para detectar el cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 01 May 2018
Un equipo de investigadores en Google LLC (Menlo Park, CA, EUA) ha desarrollado un prototipo de un microscopio de realidad aumentada (ARM) que podría ayudar a acelerar y democratizar la adopción de herramientas de aprendizaje profundo para los patólogos de todo el mundo. La plataforma comprende un microscopio de luz modificado que permite el análisis de imágenes en tiempo real y la presentación de los resultados de los algoritmos de aprendizaje automático directamente en el campo de visión. El ARM se puede adaptar a microscopios ópticos existentes en los hospitales y clínicas utilizando componentes de bajo costo y fácilmente disponibles y sin la necesidad de analizar versiones digitales de las láminas completas del tejido. 

En una charla en el Congreso Anual de la Asociación Estadounidense para la Investigación del Cáncer (AACR), con un documento adjunto, Un Microscopio de Realidad Aumentada para la Detección Automatizada en tiempo Real del Cáncer (en revisión), Google describió cómo sus investigadores demostraron la utilidad potencial del ARM configurándolo para ejecutar dos algoritmos de detección de cáncer diferentes: uno que detecta metástasis del cáncer de mama en muestras de ganglios linfáticos y otro que detecta cáncer de próstata en muestras de prostatectomía. Estos modelos se pueden ejecutar con aumentos entre 4-40x, y el resultado de un modelo dado se muestra al delinear las regiones tumorales detectadas con un contorno verde. Estos contornos ayudan a llamar la atención del patólogo sobre las áreas de interés sin oscurecer la apariencia subyacente de las células tumorales. Si bien los dos modelos de cáncer fueron entrenados originalmente en imágenes de un escáner de láminas completo con una configuración óptica significativamente diferente, los modelos funcionaron notablemente bien en el ARM sin necesidad de reentrenamiento adicional.

Imagen: Izquierda: Descripción general del ARM. Una cámara digital captura el mismo campo de visión (CdV) que el usuario y pasa la imagen a una unidad de cómputo adjunta capaz de ejecutar inferencias en tiempo real de un modelo de aprendizaje automático. Los resultados se devuelven a una pantalla de RA personalizada, que está en línea con la lente ocular y proyecta la salida del modelo en el mismo plano que la lámina. Derecha: una imagen del prototipo, que se ha adaptado a un microscopio óptico de grado clínico típico (Fotografía cortesía de Google).
Imagen: Izquierda: Descripción general del ARM. Una cámara digital captura el mismo campo de visión (CdV) que el usuario y pasa la imagen a una unidad de cómputo adjunta capaz de ejecutar inferencias en tiempo real de un modelo de aprendizaje automático. Los resultados se devuelven a una pantalla de RA personalizada, que está en línea con la lente ocular y proyecta la salida del modelo en el mismo plano que la lámina. Derecha: una imagen del prototipo, que se ha adaptado a un microscopio óptico de grado clínico típico (Fotografía cortesía de Google).

Google cree que el ARM tiene un gran impacto potencial en la salud mundial, especialmente para el diagnóstico de enfermedades infecciosas, como la tuberculosis y la malaria, en los países en desarrollo. Además, incluso en hospitales que adoptarán un flujo de trabajo de patología digital en un futuro cercano, el ARM se podría usar en combinación con el flujo de trabajo digital donde los escáneres aún enfrentan grandes desafíos o donde se requiere una respuesta rápida (por ejemplo, en los casos de citologías, imágenes fluorescentes o cortes congelados intraoperatorios). Los investigadores continuarán explorando cómo el ARM puede ayudar a acelerar la adopción del aprendizaje automático para que pueda tener un impacto positivo en todo el mundo.


Miembro Platino
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Miembro Oro
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9

Últimas Industria noticias

Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
01 May 2018  |   Industria

Grifols e IBL de Tecan colaboran en paneles de biomarcadores avanzados
01 May 2018  |   Industria

Nueva colaboración avanza en identificación microbiana para diagnóstico de enfermedades infecciosas
01 May 2018  |   Industria